CHAPTER 1 EMC FUNDAMENTALS 1

1.1 Fundamental Definitions 2
1.2 EMC Concerns for the Design Engineer 4
 1.2.1 Regulations 4
 1.2.2 RFI 4
 1.2.3 Electrostatic discharge (ESD) 5
 1.2.4 Power disturbances 5
 1.2.5 Self-compatibility 6
1.3 The Electromagnetic Environment 6
1.4 The Need to Comply (A Brief History of EMI) 9
1.5 Potential EMI/RFI Emission Levels for Unprotected Products 12
1.6 Methods of Noise Coupling 12
1.7 Nature of Interference 16
 1.7.1 Frequency and Time (à la Fourier, time
 domain ⇔ frequency domain) 17
 1.7.2 Amplitude 18
 1.7.3 Impedance 18
 1.7.4 Dimensions 18
1.8 PCBs and Antennas 18
1.9 Causes of EMI—System Level 19
1.10 Summary for Control of Electromagnetic Radiation 20
 References 21
5.3 Capacitors in Parallel 136
5.4 Power and Ground Plane Capacitance 138
5.4.1 Buried capacitance 141
5.4.2 Calculating power and ground plane capacitance 142
5.5 Lead-Length Inductance 143
5.6 Placement 144
5.6.1 Power planes 144
5.6.2 Decoupling capacitors 144
5.7 Selection of a Decoupling Capacitor 148
5.7.1 Calculating capacitor values (wave-shaping) 149
5.8 Selection of Bulk Capacitors 152
5.9 Designing a Capacitor Internal to a Component’s Package 155
5.10 Vias and Their Effects in Solid Power Planes 157
References 158

CHAPTER 6 TRANSMISSION LINES 159
6.1 Overview on Transmission Lines 159
6.2 Transmission Line Basics 162
6.3 Transmission Line Effects 163
6.4 Creating Transmission Lines in a Multilayer PCB 165
6.5 Relative Permittivity (Dielectric Constant) 166
6.5.1 How losses occur within a dielectric 169
6.6 Routing Topologies 171
6.6.1 Microstrip topology 171
6.6.2 Embedded microstrip topology 172
6.6.3 Single stripline topology 174
6.6.4 Dual stripline topology 176
6.6.5 Differential microstrip and stripline 177
6.7 Routing Concerns 178
6.8 Capacitive Loading 180
References 182

CHAPTER 7 SIGNAL INTEGRITY AND CROSSTALK 185
7.1 Need for Signal Integrity 185
7.2 Reflections and Ringing 188
7.2.1 Identification of signal distortion 191
7.2.2 Conditions that create ringing 192
7.3 Calculating Trace Lengths (Electrically Long Traces) 195
7.4 Loading Due to Discontinuities 200
7.5 RF Current Distribution 202
7.6 Crosstalk 203
7.6.1 Units of measurement—Crosstalk 206
7.6.2 Design techniques to prevent crosstalk 207
7.7 The 3-W Rule 210
References 212

CHAPTER 8 TRACE TERMINATION 215
8.1 Transmission Line Effects 216
8.2 Termination Methodologies 217
8.2.1 Series termination 221
8.2.2 End termination 226
8.2.3 Paralleling termination 227
8.2.4 Thru-line network 230
8.2.5 Resistor diode network 234
8.2.6 Diode network 236
8.2.7 Diode network 239
8.3 Terminator Noise and Crosstalk 237
8.4 Effects of Multiple Terminations 239
8.5 Trace Routing 241
8.6 Bilateral Cables 243
8.7 Summary—Termination Methods 244
References 245

CHAPTER 9 GROUNDING 247
9.1 Reasons for Grounding—An Overview 247
9.2 Definitions 247
9.3 Fundamental Grounding Concepts 249
9.4 Safety Ground 253
9.5 Signal Voltage Referencing 255
9.6 Grounding Methods 255
9.6.1 Single-point grounding 256
9.6.2 Multipoint grounding 259
9.6.3 Hybrid or selective grounding 261
9.6.4 Grounding analog circuits 261
9.6.5 Grounding digital circuits 262
9.7 Controlling Common-Mode Coupling Between Traces 262
9.7.1 Lowering the common impedance path 262
9.7.2 Avoiding a common impedance path 264
9.8 Controlling Common-Mode Impedance Coupling in Power and Ground 266
9.9 Ground Loops 268
9.10 Resonance in Multipoint Grounding 271
EMC and the Printed Circuit Board: Design, Theory, and Layout Made Simple is a companion book to Printed Circuit Board Design Techniques for EMC Compliance. When used together, these two books cover all aspects of a PCB design as it relates to both time and frequency domain issues. One must be cognizant that if a PCB does not work as intended in the time domain, frequency domain concerns become irrelevant, especially compliance to international EMC requirements. Time and frequency domain aspects must be considered together.

The intended audience for this book is the same as that for Printed Circuit Board Design Techniques for EMC Compliance: those involved in logic design and PCB layout; test engineers and technicians; those working in the areas of mechanical, manufacturing, production, and regulatory compliance; EMC consultants; and management responsible for overseeing a hardware engineering design team.

Regardless of the engineer's specialty, a design team must come up with a product that not only can be manufactured in a reasonable time period, but will also minimize cost during design, test, integration, and production. Frequently, more emphasis is placed on functionality to meet a marketing specification than on the need to meet legally mandated EMC and product safety requirements. If a product fails to meet compliance tests, redesign or rework may be required. This redesign significantly increases costs, which include, but are not limited to engineering manpower (along with administrative overhead), new PCB layout and artwork, prototyping, material, system integration and testing, purchase of new components for quick delivery (very expensive), new in-circuit test fixtures, and documentation. These costs are in addition to loss of market share, delayed shipment, loss of customer faith in the company (goodwill), drop in stock price, anxiety attacks, and many other issues. Personal experience as a consultant has allowed me the opportunity to witness these events several times with small startup companies.

My main focus as a consultant is to assist and advise in the design of high-technology products at minimal cost. Implementing suppression techniques into the PCB design saves money, enhances performance, increases reliability, and achieves first-time compliance with emissions and immunity requirements, in addition to having the product function as desired.

Working in this industry has allowed me to participate in state-of-the-art designs as we move into the future. Although my focus is on technology of the future, one cannot